
10 CROSSTALK The Journal of Defense Software Engineering July 2005

Configuration Management Fundamentals
Software Technology Support Center

The U.S. Air Force’s Software Technology Support Center offers an updated and condensed version of the “Guidelines for
Successful Acquisition and Management of Software-Intensive Systems” (GSAM) on its Web site <www.stsc.hill.af.mil/
resources/tech_docs>. This article is taken from Chapter 9 “Configuration Management” of the GSAM (Ver. 4.0). We
are pleased that all editions have been so well received and that many individuals and programs have worked hard to imple-
ment the principles contained therein. The latest edition provides a usable desk reference that gives a brief but effective overview
of important software acquisition and development topics, provides checklists for rapid self-inspection, and provides pointers
to additional information on the topics covered.

Change is a constant feature of soft-
ware development. To eliminate

change is to remove the opportunities to
take advantage of lessons learned, to
incorporate advancing technology, and to
better accommodate a changing environ-
ment. Refusal to incorporate change can
mean system limitations and early obso-
lescence, which, in the world of technol-
ogy, can sign your system’s death certifi-
cate before it is born. However, change is
not universally benign and must be con-
trolled in its introduction to a project.

All projects change something. As a
project is executed, changes to the initial
project plan and products are a natural
occurrence. The following are common
sources of changes:
• Requirements. The longer the delivery

cycle, the more likely they will change.
• Changes in funding.
• Technology advancements.
• Solutions to problems.
• Scheduling constraints.
• Customer expectations.
• Serendipitous (unexpected) opportu-

nities for an improved system.
Some of these changes may appear as

options while others may be mandated
from above or by circumstance, as in the
loss of funding. While all progress is
accompanied by change, not all change is
indicative of progress. If not properly
handled, change can slip the schedule,
affect the quality, and even kill the project.
As a project draws closer to its comple-
tion, the impacts of change are more
severe [1]. Clearly, a mechanism is needed
to control change.

In software development and other
projects, proposed changes must be eval-

uated to determine their overall contribu-
tion to the project goals. Do they lead to
improvements or do they ultimately
impede or lower project quality? Even
those changes that are ultimately benefi-
cial must be controlled in their introduc-
tion and implementation.

Putting a bigger engine in a plane may
improve its capabilities, but it cannot be
implemented until the aircraft’s structure
has been found capable or been upgraded
to support the increased weight and
thrust.

Configuration management (CM) is
the process of controlling and document-
ing change to a developing system. It is
part of the overall change management
approach. As the size of an effort increas-
es, so does the necessity of implementing
effective CM. It allows large teams to
work together in a stable environment
while still providing the flexibility required
for creative work [2]. CM in a software
environment is an absolute necessity. CM
has three major purposes [1]:
1. Identify the configuration of the

product at various points in time.
2. Systematically control changes to the

configuration.
3. Maintain the integrity and traceability

of the configuration throughout the
product life cycle.
CM accomplishes these purposes by

answering and recording the answers to
the change questions: who, what, when,
and why, shown in Figure 1 [1]. Being able
to answer these questions is a sign of
effective CM.

Effective CM provides the following
essential benefits to a project:
1. Reduces confusion and establishes

order.
2. Organizes the activities necessary to

maintain product integrity.
3. Ensures correct product configura-

tions.
4. Limits legal liability by providing a

record of actions.
5. Reduces life-cycle costs.

6. Enables consistent conformance with
requirements.

7. Provides a stable working environ-
ment.

8. Enhances compliance with standards.
9. Enhances status accounting.

In short, CM can provide cost effec-
tive project insurance when properly
planned, organized, and implemented. It
must be integral to your overall project
execution, and to your charter/customer
agreement. Proposed changes must be
dealt with systematically, promptly, and
honestly [1]. If the CM process is unrea-
sonable or unresponsive, people will try to
circumvent the process, leading to chaos
and a loss of the benefits of true CM.

Process Description
While CM is a major element of a change
control program, it is such a multifaceted
discipline that it should be considered not
simply as another activity, but as a pro-
gram in and of itself. Establishing an
effective CM program requires an under-
standing of CM functions and of the
overall CM process.

Functions of Configuration
Management
CM is comprised of four primary func-
tions: identification, change control, sta-
tus accounting, and auditing. These are
shown in Figure 2, along with their sub-
functions. All CM activity falls within the
bounds of these functions.

Identification
This function identifies those items
whose configuration needs to be con-
trolled, usually consisting of hardware,
software, and documentation. These
items would probably include such things
as specifications, designs, data, docu-
ments, drawings, software code and exe-
cutables, components of the software
engineering environment (compilers, link-
ers, loaders, hardware environment, etc.),
and hardware components and assem-

Figure 1: Configuration Management Questions

Figure 1: Configuration Management Questions

Who makes changes?

What changes are made? When are changes made?

Why are changes made?

Configuration Management Fundamentals

July 2005 www.stsc.hill.af.mil 11

blies. Project plans and guiding docu-
ments should also be included, especially
the project requirements. A schema of
names and numbers is developed for
accurately identifying products and their
configuration or version level. This must
be done in accordance with project iden-
tification requirements. Finally, a baseline
configuration is established for all config-
uration items and systems. Any changes
to the baseline must be with the concur-
rence of the configuration control organ-
ization [2].

Although key components to be man-
aged are requirements and source code,
related documentation and data should be
identified and placed under CM control.
It is important to store and track all envi-
ronment information and support tools
used throughout the software life cycle to
ensure that the software can be repro-
duced. Table 1 lists examples of items
typically put under CM control.

Change Control
Configuration control establishes proce-
dures for proposing or requesting
changes, evaluating those changes for
desirability, obtaining authorization for
changes, publishing and tracking changes,
and implementing changes. This function
also identifies the people and organiza-
tions who have authority to make changes
at various levels (configuration item,
assembly, system, project, etc.,) and those
who make up the configuration control
board(s) (CCB). (According to IEEE
610.12 [3], a CCB is a group of people
responsible for evaluating and approving
or disapproving proposed changes to
configuration items, and for ensuring
implementation of approved changes.)

Additionally, various change criteria
are defined as guidelines for the control
organizations. Different types of configu-
ration items or different systems will
probably need different control proce-
dures and involve different people. For
example, software configuration control
has different needs and involves different
people than communications configura-
tion control and would probably require
different control rules and a different
control board [2]. Configuration change
control activities include the following:
• Defining the change process.
• Establishing change control policies

and procedures.
• Maintaining baselines.
• Processing changes.
• Developing change report forms.
• Controlling release of the product.
A generic software change process is
identified in Figure 3 (see next page).

Status Accounting
Status accounting is the documentation
function of CM. Its primary purpose is to
maintain formal records of established
configurations and make regular reports
of configuration status. These records
should accurately describe the product,
and are used to verify the configuration of
the system for testing, delivery, and other
activities. Status accounting also maintains
a history of change requests and authori-
zations, along with status of all approved
changes. This includes the answers to the
CM questions in Figure 1 [2].

Key information about the project
and configuration items can be communi-
cated to project members through status
accounting. Software engineers can see
what fixes or files were included in which
baseline. Project managers can track com-
pletion of problem reports and various
other maintenance activities. Minimal
reports to be completed include transac-
tion log, change log, and item delta report.
Other typically common reports include

resource usage, stock status (status of all
configuration items), changes in process,
and agreed-upon deviations [6].

Auditing
Effective CM requires regular evaluation
of the configuration. This is done
through the auditing function, where the
physical and functional configurations are
compared to the documented configura-
tion. The purpose of auditing is to main-
tain the integrity of the baseline and
release configurations for all controlled
products [2]. Auditing is accomplished via
both informal monitoring and formal
reviews.

Configuration auditing verifies that
the software product is built according to
the requirements, standards, or contractu-
al agreement. Test reports and documen-
tation are used to verify that the software
meets the stated requirements. The goal
of a configuration audit is to verify that all
software products have been produced,
correctly identified and described, andFigure 1: Configuration Management Questions

Items Under CM Control

System data files Source code modules

Requirements specifications System build files/scripts

Design specifications Interface specifications

Test plans Software architecture specifications

Test data sets Test procedures

User documentation Test results

Quality plans Software development plan

Compilers Configuration management plans

Debuggers Linkers and loaders

Shell scripts Operating systems

Other related support tools Third-party tools

Development procedures and standards [4] Procedure language descriptions

Table 1: Items Under CM Control

Who makes changes?

What changes are made? When are changes made?

Why are changes made?

Table 1: Items Under CM Control

Table 1: Items Under CM Control

Management

Figure 2: Major Functions of Configuration Management [2]

Data
Identification

Requirements

Identify
Configuration

Items
Identify

Acceptance
Requirements

Define
Baselines

Establish
Identification

Schema Identification

Change
Control

Status
Accounting

Auditing

Document Configuration Items,
Requirements, Identification

Scheme, Baselines

Establish
Change
Criteria

Establish Review
and Control

Organizations

Establish
Change Control

Procedures

Control Revisions to
Specifications,

Designs, Drawings,
Data, and Documents

Functional
Configuration

AuditsPhysical
Configuration

Audits

Formal
Qualification

Reviews

Maintain History
of Change
Approvals

Maintain
Change Status

Records

Maintain
Configuration

Verification Records

Maintain Product
Description

Records

Figure 2: Major Functions of Configuration Management [2]

Configuration Management and Test

12 CROSSTALK The Journal of Defense Software Engineering July 2005

that all change requests have been
resolved according to established CM
processes and procedures. Informal
audits are conducted at key phases of the
software life cycle.

There are two types of formal audits
that are conducted before the software is
delivered to the customer: Functional
Configuration Audit (FCA) and Physical
Configuration Audit (PCA). FCA verifies
that the software satisfies the software
requirements stated in the System

Requirements Specification and the
Interface Requirements Specification. In
other words, the FCA allows you to vali-
date the system against the requirements.
The PCA determines whether the design
and reference documents represent the
software that was built. Configuration
audit answers the questions, “Does the
system satisfy the requirements?” “Are all
changes incorporated in this version?”
Configuration audit activities include the
following:
• Defining audit schedule and proce-

dures.
• Identifying who will perform the

audits.
• Performing audits on established

baselines.
• Generating audit reports.

Establishing a Software
Baseline Library
In support of the above activities, a soft-
ware baseline library is established. The
library is the heart of the CM system. It
serves as the repository for the work
products created during the software life
cycle. Changes to baselines, and the
release of software products, are system-
atically controlled via the change control
and configuration auditing functions. The
software library provides the following:
• Supports multiple control levels of

Software Configuration Management
(SCM).

• Provides for the storage and retrieval
of configuration items or units.

• Provides for the sharing and transfer
of configuration items or units be-
tween control levels within the library.

• Provides for the storage and recovery
of archive versions of configuration
items or units.

• Helps to ensure correct creation of
products from the software baseline
library.

• Provides storage, update, and retrieval
of CM records.

• Supports production of CM reports.
• Provides for maintenance of library

structure [7].
In the past, libraries have been com-

posed of documentation on hard copy
and software on machine-readable media.
Today, with the advances in information
technology and standards that encourage
contractors to use automated processing
and electronic submittal techniques,
organizations are moving toward main-
taining all information on machine-read-
able media.

Configuration Management
Process
Understanding what CM is supposed to
accomplish is one thing. Putting it into
practice is another. As with most project
activities, CM begins with planning. With
a plan, configuration baselines can be
established. Following this initial configu-
ration identification, the cyclical configu-
ration control process is put into motion.
These three major CM implementation
activities are shown in Figure 4.

Planning
Planning begins by defining the CM
process and establishing procedures for
controlling and documenting change. A
crucial action is the designation of mem-
bers of the CCB. Members should be
chosen who are directly or indirectly
involved or affected by changes in config-
uration. For example, a software CCB
would obviously be populated with repre-
sentatives from different software teams,
but software affects many more aspects
of a project. There should also be repre-
sentatives from the hardware, test, sys-
tems, security, and quality groups as well
as representatives from project manage-
ment and possible other organizations.

Not all changes would be reviewed by
this august body. Changes occur at differ-
ent system levels and affect different por-
tions of the overall system. Many changes
will probably only affect a small subset of
the system and could therefore be
reviewed and approved by a smaller
group. Some sort of delineation of
change levels should be made during
planning to keep change decisions at the
proper level. While software CM is essen-

Software
Change

Software
Enhancements

Problems

Analyze
and

Assess Impact

Review

Board

Engineering
Change Proposal

Preparation

Control

Board

Evaluate
Engineering

Change
Proposal

Archive
Change

Incorporate
Change

Approve?Yes No

Supply
Feedback

to Originator

Verify
Change

END

Control, Document, and Audit Configuration

ate Proposed
Changes and

e/Disapprove

Track
Approved

Changes to
Closure

Update Baselines
and History –

Publish Reports

Audit – Compare
Actual With

Documented
Configuration

Plan CM Program

Define CM
Process

Identify Control
Board Members

Develop or
Procure CM Tools

Establish Baselines

Identify Items
to Control

Identify Baselines
Develop Schema

of Identifiers

Figure 3: Generic Change Process [5]

Software
Change

Software
Enhancements

Problems

Analyze
and

Assess Impact

Review

Board

Engineering
Change Proposal

Preparation

Control

Board

Evaluate
Engineering

Change
Proposal

Archive
Change

Incorporate
Change

Approve?Yes No

Supply
Feedback

to Originator

Verify
Change

END

Control, Document, and Audit Configuration

Evaluate Proposed
Changes and

Approve/Disapprove

Track
Approved

Changes to
Closure

Update Baselines
and History –

Publish Reports

Audit – Compare
Actual With

Documented
Configuration

Plan CM Program

Define CM
Process

Identify Control
Board Members

Develop or
Procure CM Tools

Establish Baselines

Identify Items
to Control

Identify Baselines
Develop Schema

of Identifiers

Figure 4: Configuration Management Implementation Process

tial, there may need to be other CCBs to
control change in other areas of the proj-
ect. Again, this is something that should
be worked out in the planning phase.

Various software tools exist that can
facilitate the CM process flow and main-
tain configuration history. Using a CM
software tool is highly recommended.
The temptation will be to choose a tool
because it looks good in a demonstration
and then build the CM process around it.
The process should be defined first, and
then a tool chosen to facilitate the
process.

Establishing Baselines
Once the CM program exists on paper, it
must be determined just what configura-
tions it will control. The second major
step of implementing effective CM is
identifying what items, assemblies, code,
data, documents, systems, etc. will fall
under configuration control. With the
configuration items identified, the base-
line configuration must be identified for
each item. For items that already exist, it
may prove to be nothing more than exam-
ining or reviewing and then documenting.
For those items that have not been devel-
oped yet, their configuration exists in the
requirements database or in the project
plans. Until they come into physical or
software reality, changes to their configu-
ration will consist only of changes to the
requirements or plans.

Another essential activity in this step
is developing a schema of numbers, let-
ters, words, etc. to accurately describe the
configuration revision, or version, for
each general type of configuration item.
There may be project requirements that
dictate some type of nomenclature, or
there may be an organizational or indus-
try standard that can be used as the basis
for configuration identification.

Controlling, Documenting, and Auditing
When the baselines have been established,
the challenge becomes one of keeping the
actual and documented configurations
identical. Additionally, these baselines
must conform to the configuration speci-
fied in the project requirements. This is an
iterative process consisting of the four
steps shown in Figure 4.

All changes to the configuration are
reviewed and evaluated by the appropriate
configuration control representatives
specified in the CM plan. The change is
either approved or disapproved. Both
approvals and disapprovals are document-
ed in the CM history. Approved changes
are published and tracked or monitored
until they are implemented. The appropri-

ate configuration baseline is then updated,
along with all other applicable documents,
and reports are published and sent to
affected organizations indicating the
changes that have occurred. At selected
time intervals and whenever there appears
to be a need, products and records are
audited to ensure the following:
• The actual configuration matches the

documented configuration.
• The configuration is in conformance

with project requirements.
• Records of all change activity are

complete and up-to-date.
The controlling, documenting, auditing
cycle is repeated throughout the project
until its completion.

Updating the CM Process
It is unlikely a perfect CM program will be
assembled during the initial planning
stage. There will be learning and changes
in the program that indicate a need for
adjustments in the CM process. These
may be any mixture of modifications to
make it more efficient, responsive, or
accurate. When changes in the CM
process are needed, consider them as you
would any other changes, get the approval
of all participating organizations, and
implement them as appropriate. It would
be ironic indeed to have an unchanging
change process.

Configuration Management
Checklist
This checklist is provided to assist you in
establishing an effective CM program. If
you cannot answer a question affirmative-
ly, you should carefully examine the situa-
tion and take appropriate action.

CM Planning
q Have you planned and documented a

configuration management process?
q Have you identified CCB members for

each needed control board?
q Has CM software been chosen to

facilitate your CM process?

Establishing Baselines
q Have all configuration items been

identified?
q Have baselines been established for all

configuration items?
q Has a descriptive schema been devel-

oped to accurately identify configura-
tion items and changes to their config-
uration?

Controlling, Documenting, and
Auditing
q Is there a formal process for docu-

menting and submitting proposed
changes?

q Is the CCB active and responsible in
evaluating and approving changes?

q Is there a higher authority to appeal to
when the CCB gets hung, and cannot
come to a consensus?

q Are all changes tracked until they are
fully implemented?

q Are all changes fully documented in
the baseline documents and change
histories?

q Are regular reports and configuration
updates published and distributed to
interested organizations?

q Are regular audits and reviews per-
formed to evaluate configuration
integrity?

q Are configuration errors dealt with in
an efficient and timely manner?

Updating the Process
q Is the CM program itself – its effi-

ciency, responsiveness, and accuracy –
evaluated regularly?

q Is the CM program modified to
include recommended improvements
when needed?

Case Studies
The following case studies outline specif-
ic instances where organizations success-
fully implemented software CM (SCM).

Selecting a CM Tool
At a large aerospace corporation in the
Southeast, the CM manager turned in a
recommendation to purchase a CM auto-
mated tool that would satisfy all require-
ments identified by the CM groups.
Management delayed acting on the rec-
ommendation to give the other engineer-
ing departments time to review the rec-
ommended tool.

In the end, the recommendation to
purchase the tool was cancelled. It was
felt that while the tool did support the
CM organization, it did not adequately
address other developmental considera-
tions that the engineering ranks felt were
important. Sometime later a different tool
was purchased, one that satisfied all the
major requirements of SCM, the software
developers, SQA, test, integration, and
management organizations.

Overcoming Barriers to SCM
During a recent visit to a private-sector
corporation (i.e., they did not deal with
government contracts) in New England,
it was discovered that the developer’s
major concern about implementing CM
activities was all the restrictions they would
have to deal with. They had been led to

Configuration Management Fundamentals

July 2005 www.stsc.hill.af.mil 13

Configuration Management and Test

14 CROSSTALK The Journal of Defense Software Engineering July 2005

believe that CM meant formal controls,
restricted access, limited ability to apply
creative solutions, and so on. When it was
suggested that data can transition to for-
mally controlled baselines through a series
of informal control steps, and that CM
did not mean a lockdown and bottleneck,
they became eager to be involved. After a
number of meetings, a phased approach
to formal CM allowed for the placement
of informal controls and data gathering
which led to baselined items. Everyone
was pleased with the process.

The developers soon realized they
could work together with CM as a team to
solve problems rather than as two sepa-
rate organizations with their own con-
cerns and desired solutions. More impor-
tantly, perhaps, the CM group learned
that when they got out of their corner
office and out onto the engineering floor
(being support and service oriented) they
quickly became an integral part of the
engineering and development process
and team.

Implementing CM With an
Electronic Database
A team of 35 to 40 developers was devel-
oping six computer software configura-
tion items, which all had two or more cus-
tomer variants as well as maintenance
variants. The operating system was Unix,
and the development languages were
Ada, C, and C++. Implementing classical
CM in this type of environment would
normally require three to four CM practi-
tioners to handle all the code and docu-
ment manipulations. The team chose
instead to implement a mostly developer-
executed CM system called Effective SCM.
They implemented a Software Query
Language-compliant, database driven,
process oriented CM system, which sup-
ports a rule-based, closed-loop, change-
package approach to development.

Daily interaction with the CM system
by the developers provided 100 percent
tracking and status accounting of every-
thing that happened to any file in the sys-
tems without the need for intrusion or
interference by CM practitioners. The CM
practitioners maintained the process
model and performed the configured
builds. As a result, CM support to this
team was less than one person, and in fact
was in the order of 80-120 hours per
month instead of the more than 400
hours per month that a classical approach
would have used.

The electronic database created by the
engineers completely documented the
execution of their software development
plan. It also tracked the history of every

file used in the system including change
documents, baselines, and releases for
each file. Note that rule-based, closed-
loop change control electronically imple-
mented business rules that prevented the
creation of a new version without author-
ization and prevented closure of a change
request that had not been implemented.

A change-package approach supports
electronic creation of new baselines by
application of changes to a previous base-
line. The tool electronically adds, replaces,
or removes files that are related to the list
of changes being made and is very effec-
tive in tracking development activities.
(Note that Effective SCM is an unregistered
trademark of BOBEV Consulting. For a
complete description, see “Effective
Software Configuration Management” in
CrossTalk February 1998.)

Lessons Learned
The following are just a sample of the many
lessons that have been learned from apply-
ing CM and its associated technologies.

The Importance of Planning
With only a few exceptions, if you look at
any of the CM standards, manuals, guides,
books, etc., you will likely find that CM
has four major functions: (1) identifica-
tion, (2) change control, (3) status
accounting, and (4) auditing. In nearly
every case, planning is left out. Yet, SCM
is using much more complex equipment
to establish and maintain complex envi-
ronments, multiple baselines, multiple
environments on multiple platforms, etc.
Like everyone else, CM has to do all that
faster, cheaper, smarter, and better than
before. Planning has become more
important than ever.

Planning cannot be interpreted as
meaning a CM Plan has been written. That is
certainly a good start, but much more is
needed than just a document that explains
SCM’s roles and responsibilities. CM plan-
ning activities must also include, to name
only a few, such things as the following:
• Metrics. How long? How many arti-

facts? When were they created? When
were they updated? Where are they?

• Skill Mix. What is needed and who
has it or who can get it?

• Infrastructure. Who is doing what,
where, when, and how?

• Contingencies. If this happens, then
what?

• Effort Tracking. Manpower levels.
• Subcontracts. Who has responsibility

and authority?
• Resources. Budget, tool licenses,

training, and head count.
• Matrix Management. Decentralized

work force.
• Control Transitions. Informal to

formal to field.
• Records Retention. What gets kept

where and for how long?
• Control. Who controls what and how

do they do it?
• Process. Standardized procedures for

repeatability.

Things to Remember
The most significant lessons are the fol-
lowing:
• Get an inside person on your side – an

internal champion. They will become
an evangelist for your solution to their
co-workers.

• Get management buy-in and sponsor-
ship. Management must really want it,
not just go along with it. All levels of
management need to support SCM.
While implementing SCM, keep a
focus on management sponsorship at
all times.

• Maintain a sense of humor.
• Be flexible and sensitive to corporate

culture.
• Seek out the early success.
• Do not use a critical project as pilot.
• Use a systems approach: Where am I?

Where do I want to go? How am I
going to get there?

• Success is more likely with lots of
preparation, focus on CM and devel-
oper needs, breadth of participation,
online access to sample process and
planning templates, and standard ter-
minology.

• Keep it simple. If it is too complex, or
gets in the way, it will not get used.

• Communicate, communicate, commu-
nicate.u

References
1. Software Technology Support Center.

“Life Cycle Software Project Manage-
ment.” STSC Seminar, 9 Oct. 2001.

2. Software Program Managers Net-
work. “Little Book of Configuration
Management.” Software Program
Managers Network, Nov. 1998 <www.
spmn.com/products.html>.

3. Institute of Electrical and Electronics
Engineers. “Standard 610.12-1990
IEEE Standard Glossary of Software
Engineering Terminology.” New
York: IEEE, 1990.

4. Kasse, Tim. Software Configuration
Management for Project Leaders.
Proc. of Software Technology Con-
ference, Apr. 1997.

5. Berblack, Ronald H. Software Config-
uration Management. John Wiley &
Sons, New York, 1992.

6. Ben-Menachem, Mordechai. Software
Configuration Management Guide-
book. McGraw-Hill, 1994.

7. Olson, Timothy G., et al. “A Software
Process Framework for the SEI Capa-
bility Maturity Model: Repeatable Lev-
el.” CMU/SEI-93-TR-7. Pittsburgh,
PA: Software Engineering Institute,
1993.

July 2005 www.stsc.hill.af.mil 15

About the Author

Configuration Management Fundamentals

The Software Technology Support
Center (STSC) produced the “Guide-
lines for Successful Acquisition and
Management of Software-Intensive
Systems.” Visit the STSC Web site at
<www.stsc.hill.af.mil/resources/tech_
docs> to access all 17 chapters of this
document. The STSC is dedicated to
helping the Air Force and other U.S. gov-
ernment organizations improve their
capability to buy and build software bet-
ter. The STSC provides hands-on assis-
tance in adopting effective technologies
for software-intensive systems. The STSC
helps organizations identify, evaluate, and
adopt technologies that improve software
product quality, production efficiency,
and predictability. Technology is used in
its broadest sense to include processes,

methods, techniques, and tools that
enhance human capability. The STSC
offers consulting services for software
process improvement, software technolo-
gy adoption, and software technology
evaluation, including the Capability
Maturity Model® IntegrationSM, software
acquisition, project management, risk
management, cost and schedule estima-
tion, configuration management, soft-
ware measurement, and more.

Software Technology
Support Center
6022 Fir AVE BLDG 1238
Hill AFB, UT 84056-5820
Phone: (801) 586-0154
DSN: 586-0154
E-mail: stsc.consulting@hill.af.mil

Configuration Management
Yellow Pages
www.cmcrossroads.com/yp/index.php?oldpage=
configuration _management.html
The Configuration Management Yellow Pages is a categorized
database of links to configuration management and develop-
ment resources. The site, originally created by Andre van der
Hoek, is now hosted at CM Crossroads in a format that allows
any member to add or update a new resource and to review and
rate existing ones.

Test and Measurement World
www.tmworld.com
This is the online version of Test & Measurement World and Test
& Measurement Europe, which cover the electronics testing
industry, providing how-to information for engineers who test,
measure, and inspect electronic devices, components, and sys-
tems.

Software Configuration Management
www.sei.cmu.edu/legacy/scm
This is the Software Configuration Management area of the
Software Engineering Institute’s (SEI) Web site. This area is
intended to share the configuration management research done
by the SEI between 1988 and 1994 and to provide pointers to
other useful sources of information on Software Configuration
Management.

Software Testing Institute
www.softwaretestinginstitute.com
The Software Testing Institute (STI) provides industry publica-
tions, research, and online services, including a software testing
discussion forum, the STI Resource Guide, the Automated
Testing Handbook, STI Buyer’s Guide, and more.

Data Interchange Standards Association
http://www.disa.org
Home to numerous organizations developing e-business stan-
dards, the Data Interchange Standards Association helps indi-
viduals and the business community improve business process-
es, reduce costs, increase productivity, and take advantage of
new opportunities.

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center is an Air Force organ-
ization established to help other U.S. government organizations
identify, evaluate, and adopt technologies to improve the quali-
ty of their software products, efficiency in producing them, and
to accurately predict the cost and schedule of their delivery.

Institute of Electrical and Electronics
Engineers
www.ieee.org
The IEEE promotes the engineering process of creating, devel-
oping, integrating, sharing, and applying knowledge about elec-
trical and information technologies and sciences. IEEE provides
technical publications, conferences, career development assis-
tance, financial services and more.

Practical Software and Systems
Measurement
www.psmsc.com
Practical Software and Systems Measurement (PSM): A
Foundation for Objective Project Management was developed
to meet today's software and system technical and management
challenges. The Department of Defense and the U.S. Army
sponsor PSM. The goal of the project is to provide project man-
agers with the objective information needed to successfully meet
cost, schedule, and technical objectives on programs.

WEB SITES

CrossTalk did not have room to
cover the fundamentals of testing in this
month’s theme section, “Configuration
Management and Test.” The Guidelines
for Successful Acquisition and Manage-
ment of Software-Intensive Systems
(GSAM) is also a good source for infor-
mation on the basics of testing and
many other software topics. For more
information on test, see Chapter 12 of
GSAM Ver.. 4.0 at <http://www.stsc.
hill.af.mil/resources/tech_docs/gsam4.
html>.

